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Flows on surfaces and related dynamical systems

In this chapter we study a class of continuous-time dynamical systems with
very low-dimensional behavior according to the description given in Chapter 10,
namely, smooth flows on closed compact surfaces. We will also pay attention
to flows on surfaces with boundary such as the closed disc or the cylinder
and on open surfaces such as the plane. This, in particular, will allow us to
treat semilocal problems. Another natural object associated with such flows
are Poincare maps induced on transversals to the flow. If the flow preserves
a nonatomic measure positive on open sets (for example, an area) then such
Poincare return maps are topologically conjugate to a locally isometric map
with finitely many discontinuities. The term "interval exchange transformation"
gives a visual description of such a map.

In general, the asymptotic behavior of flows on surfaces is characterized by
slow orbit growth but they have less uniform types of recurrence and of statisti­
cal behavior than invertible one-dimensional maps studied in Chapters 11 and
12. The former aspect is closely related to the fact that both orbits and one­
dimensional transversals to a flow locally separate the surface; the latter is due
primarily to the more complicated topology of surfaces of genus greater than
one compared to the circle (and the torus) and to a lesser extent to the effects
of time change. Typical manifestations of this type of complexity, intermediate
between the simple behavior of our first group of examples (Sections 1.3-1.6)
and the circle diffeomorphisms on the one hand, and that of the examples with
positive topological entropy (Sections 1.7-1.9, 5.4,9.6) on the other, are finite­
ness results for the number of nontrivial orbit closures (Theorem 14.6.3) and
nonatomic ergodic invariant measures (Theorem 14.7.6) for flows on surfaces of
genus greater than one, which replace uniqueness of a minimal set (Proposition
11.2.5) and unique ergodicity (Theorem 11.2.9) for circle homeomorphisms.

Even though most of these results hold in full generality we prove them under
simplifying assumptions, such as finiteness and not too degenerate structure
of the fixed points and preservation of area or a measure positive on open
sets. This is justified by the facts that first unlike in the case of circle maps
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452 14. Flows on surfaces and related dynamical systems

these assumptions do not restrict us to essentially trivial situations and indeed
convey the entire possible complexity of flows on surfaces, and second that this
case appears in several interesting situations such as billiards in polygons with
rational angles.

1. Poincare-Bendixson theory

a. The Poincare-Bendixson Theorem. We begin with the study of flows
on those surfaces whose topology allows only simple types of recurrent orbits,
that is, fixed points and periodic orbits. This does not mean that the global
orbit structure of any flow on such a surface is trivial, but only that the com­
plexity of that structure would have be due to the combinatorial picture of fixed
points, periodic orbits, and saddle connections rather than to recurrent behav­
ior. The sphere, the plane, and the disc are prime examples of surfaces with
that property, but this class also includes the cylinder, the Mobius strip, and
the projective plane. The arguments are based on the Jordan Curve Theorem
A.5.2. We obtain the following:

Theorem 14.1.1. (Poincare-Bendixson Theorem) Let M be a surface
that is an open subset of the sphere 8 2 or the projective plane. Let X be a
C I vector field on M. Then all positively or negatively recurrent orbits are
periodic. Furthermore, if the w-limit set of a point contains no fixed points,
then it consists of a single periodic orbit.

Proof. Suppose first that M is a subset of the sphere. Denote by <.pt the flow
generated by X and suppose p is positively recurrent and nonperiodic. Take
a short transversal ~ at p and let t be the smallest positive number for which
<.pt (p) E ~. Then the union of the orbit segment {<.ps (p) }o<s<t and the piece of ~
between P and <.pt (p) is a simple closed curve C called a p~etransversal (because
we shall later use such curves to construct transversals). By the Jordan Curve
Theorem A.5.2 the complement of C consists of two disjoint open sets A and B.
We may label them such that near ~ the flow goes from A to B. This implies
that the positive semiorbit of <pt(p), hence the w-limit set w(p) of P, is in B.
Since P is recurrent we have A :3 <.p-t:-(p) E O(p) C w(p) c B, a contradiction.

If M is a subset of the projective plane then there is an orientable double
cover of M. If p E M is a positively recurrent nonperiodic point, then consider
the two points PI and P2 that cover it. The orbit of PI under the flow generated
by the lift of the vector field X accumulates on {PI, P2}. If it accumulates
on PI then we are done by the previous argument. Otherwise it accumulates
on P2 and we can construct a pretransversal near P2, which again leads to a
contradiction.

Now consider the w-limit set W of a point P and assume that it contains no
fixed points. By Corollary 3.3.7 there are recurrent points in W. By the above
these are periodic. Thus let q E W be a periodic point. Note that in the case of
the projective plane the lift of q to the orientable double cover is still periodic,
so we may assume that M is orientable. Consider a small transverse segment
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14.1. Poincare-Bendixson theory

FIGURE 14.1.1. A pretransversal

453

'"Y containing q. By continuity the return map to this segment is defined on a
neighborhood of q in 'Y. Take a one-sided neighborhood I of q small enough so
that the first point cpt (p) in '"Y is not in I, but infinitely many of these returns are.
Parameterizing this neighborhood by [0, 8) gives a continuous map f from an
interval [0,8) to an interval [0,8') that fixes 0. The orbit of p provides infinitely
many x E (0,8) for which f(x) < x, so either f(x) < x for all x E [0,8) or
[0,8) contains a fixed point y. The latter case is impossible, since the interval
[0, y] would be invariant under f and hence there would be an invariant annulus
for the flow that separates the orbit of q from that of p, so q ~ w (p). But if
f(x) < x then all x E (0,8) are positively and monotonically asymptotic to 0.
Since the return times to I are bounded this means that the orbit segments of
p between successive returns converge to the orbit of q, so w(p) coincides with
the orbit of q. 0

b. Existence of transversals.

Definition 14.1.2. A transversal to a vector field on a surface is a simple
closed curve such that the vector field is nowhere tangent to the curve.

Let T be a transversal to a vector field X and fix an orientation of T. Then
at each point of T we can define the angle between T and X. This angle is either
in (0, 7r) or in (0, -7r) for all points.

Proposition 14.1.3. Let M be a surface with a Riemannian metric and X a
C 1 vector field on M with a positively recurrent nonperiodic orbit. Then for
every E > °there exists an oriented transversal T such that the angle between
X and T is in (0, E) at every point.

We note that the proof is easier in the case of orientable surfaces, but that
nonorientability is only a minor complication.

Proof. We begin with a construction which is a more careful version of our
construction of pretransversals. Naturally, since we are on an arbitrary surface
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454 14. Flows on surfaces and related dynamical systems

we cannot use the Jordan Curve Theorem A.5.2 and we do not get a contra­
diction as in the proof of Theorem 14.1.1. Let p be a positively recurrent point
and consider a flow box, that is, a neighborhood U of p on which there are 0 1

a
coordinates (x, y), -E ~ Y ~ E, in which X = 8y and p = O. The boundary

curve given by y == -E is called the base of the flow box, and the curve y == E

the roof.
Denote the flow generated by X by cpt. Since p is positively recurrent, but

not periodic, there are infinitely many values of t for which cpt (p) is on the line
y == 0 in U. Since X does not vanish along the orbit of p, we can choose a vector
field Y along the positive semiorbit of p such that (X, Y) is a frame, that is, X
and Yare linearly independent at each point. This defines an orientation for
all points of the orbit of p. For any two points of cpt(p) in U we can compare
these orientations. Given 8 > 0 let us call a time to a closest-return time if the
point cpta (p) is on the line y == 0, Ixl < 8 in U and closer to °than any point
cpt(p) on the same line for any t E (0, to). We would like to have infinitely many
closest returns whose orientation agrees with that at p. If that is not the case
then the orientations at p and cpt(p) differ for infinitely many closest returns,
so we can consider two successive closest-return times to and t 1 such that the
orientations at cpta (p) and cptl (p) agree and the distance between cpta (p) and
cptl (p) is as small as we please. Replacing p by cpta (p) then puts us in the first
case. Thus we may assume that the point p has a closest return cpta (p) at which
the orientation coincides with that at p. Notice that the preceding argument is
only needed to take care of the case of nonorientable surfaces.

Consider now a narrow strip around the orbit segment of p for t E [0, to].
This strip may be assumed to be orientable since the frame (X, Y) along the
orbit of p can be extended to a frame on a small neighborhood of the orbit
segment. Using the Riemannian structure we can thus define a rotated vector
field Z == ReX as the vector field that has angle () with X. If the angle is small
enough and has the right sign then the orbit of p under the flow 'l/Je generated by
Z stays within the strip and returns to a point 'l/JS' (p) between p and cpta (p) on
the line y == O. Consider the curve c defined by connecting the points 'l/J~l and
'l/J~2-(p) with a straight line in U, where t 1 and t2 are chosen such that 'l/JS (p) E U
for t E [0, t 1 ] and t E [t2' t']. If t 1 is not too small and t2 is not too close, then
for sufficiently small 8 the angle between c and X is less than E where defined.
Thus we can take a smooth curve T sufficiently close to c such that the angle
between T and X isbetween 0 and E along T. This is the desired transversal. 0

We would like to See where the return map to such a transversal is defined.
This construction clearly yields a transversal T such that there is at least one
point q E T that returns to T in positive time. Thus the return map to T is well
defined and continuous on a nonempty open subset of T. The following result
gives a way to show that this is a large set in some cases. It applies not only to
closed transversals, but to transverse segments as well. Notice that the set of
points on the transversal that return to it is open and hence a union of disjoint
intervals.
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14.1. Poincare-Bendixson theory 455

Proposition 14.1.4. Let M be a closed surface with a 0 1 vector field X.
Suppose 7 is a transversal, not necessarily closed. If 70 is the set of points
returning to 7 and p E 070 an endpoint of an interval in 70 that is not an
endpoint of 7 and does not return to an endpoint of 7, then the w-limit set w(p)
consists of fixed points of X.

Proof. Denote by cpt the flow generated by X and let us suppose that there
is a point y E w(p) "Fix(<pt). Observe that in this case the orbit of p has
infinite length since there is an E > 0 and a neighborhood of y (for example,
a flow box) to which the orbit returns infinitely many times and such that
upon each return the orbit segment in the neighborhood has length E. Since M
is compact, the orbit of p thus has a nonperiodic recurrent limit point. This
means that for E > 0 there are times 0 < t 1 < t2 such that d(cpt! (p), cpt2 (p)) < E

and the orientations at <pt!(p) and <pt2 (p) (as defined in the previous proof)
coincide. By closing {<pt(p) I tl ::; t ::; t2} by a short transverse curve we obtain
a pretransversal. So from the orbit of p we have just produced pretransversals
with arbitrarily short transverse pieces.

Note that given two segments 71 and 72 transverse to X for which there is
an interval I C 71 of points whose positive orbits intersect 72, there is a flow
box consisting of orbit segments beginning on I and ending on 72. It is useful
to note that any closed transversal that intersects an orbit segment of a flow
box must intersect the base or roof or else traverse the entire flow box, that is,
intersect every orbit segment in the flow box. The same holds for the transverse
segment of a pretransversal as long as its ends are not in the flow box.

Given q E I let r be the midpoint (in I) between p and q and denote by J the
interval with endpoints q and r. Let d be the minimum width of the flow box
with base J and roof in 7 (that is, the infimum of lengths of curves intersecting
all orbit segments in the flow box). As we have observed, we can construct a
pretransversal from the orbit of p whose transverse part 'Y has length less than
d/2 and is disjoint from 7. Note that the positive semiorbit of every point p'
of I sufficiently close to p must intersect 'Y (either at time approximately t1 or
at time approximately t2). The interval with endpoints p and p' is the base of
a flow box consisting of orbit segments ending on 'Y. Except for the base, 7 is
disjoint from this flow box, since otherwise 7 would intersect all orbit segments
in the flow box, in particular that of p. But by assumption p does not return
to 7.

Consider now the flow box whose base is the interval in 7 with endpoints q
and p' and whose roof is in 7. We may assume that this interval contains the
midpoint r between p and q. The previous argument shows that 'Y intersects
this flow box and hence traverses it completely (since it is disjoint from 7).

Hence the length of 'Y exceeds d by choice of d. On the other hand we chose
1 to have length less than d/2. This contradiction ends the proof. 0

Corollary 14.1.5. If X is a fixed-point-free vector field on a closed surface
and 7 a closed transversal, then the return map to T is either defined on all of
T or not defined at all.
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456 14. Flows on surfaces and related dynamical systems

I

L-J

J

FIGURE 14.1.2. Arrangement of the transversals

Proposition 14.1.6. Let X be an area-preserving vector field on a closed com­
pact surface M all of whose fixed points are centers and (possibly multiple) sad­
dles. Let 7 be a not necessarily closed transversal to X. Then the return map
on 7 is defined and continuous at all but finitely many points and at those points
both one-sided limits exist.

Proof. First, the set of fixed points of X is finite since saddles are isolated and
M is compact. There are finitely many positive semiorbits whose w-limit sets
consist of fixed points. Those are incoming (stable) separatrices of the saddles.
In fact, the w-limit set of any separatrix consists of a single saddle.

By Proposition 4.1.18(1) applied to a time-1 map the set of recurrent points
is dense in M; hence its intersection with any flow box U around p E 7 is dense
in U. Since the set of recurrent points is flow-invariant, the set 70 of points in
7 that return to 7 is dense in 7. Recall that 70 is open and hence consists of
intervals. Hence by Proposition 14.1.4 the positive semiorbit of any endpoint
of any component of 70 must be an incoming separatrix of one of the fixed
points. Thus 70 consists of finitely many intervals, and since it is dense in 7,

its complement is finite.
Note that on each interval of 70 the return map is injective, hence monotone,

so the one-sided limits exist at the endpoints. 0

Remark. The only way invariance of the area was used was through Propo­
sition 4.1.18, which can be applied if the flow has an invariant measure whose
support is the whole surface, that is, which is positive on open sets. However,
in the area-preserving case extra information can be obtained about the return
map.

Corollary 14.1.7. Under the assumptions of the previous proposition there
exists a smooth parameter on 7 such that the return map to 7 is an isometry
on each component of 70.

Proof. Consider the smooth invariant measure on 7 induced by the (invariant)
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14.2. Fixed-paint-free flows on the torus 457

area (cf. Proposition 5.1.11). Pick an initial point pET and an orientation
on T. Then parameterize points x E T by the (signed) measure of the interval
between p and x. 0

In Section 14.5 we will study the return maps that appear in this corollary.

Exercises

14.1.1*. Show that there is a C" -open dense set of C" vector fields on a com­
pact closed surface that have only finitely many fixed and periodic orbits, all
of them hyperbolic.

14.1.2. Show that for any area-preserving vector field on the sphere there is a
dense invariant set that consists of fixed points and periodic orbits.

14.1.3. Show that the Poiucere-Bendixsou Theorem 14.1.1 holds for any flow
generated by a CO vector field so long as the latter is uniquely integrable.

2. Fixed-point-free flows on the torus

a. Global transversals. According to the Poincaro-Hopf Index Theorem
8.6.6 the only compact surfaces (without boundary) that admit fixed-point­
free flows are the torus and the Klein bottle. It turns out that on the Klein
bottle nontrivial recurrence is impossible (see Exercise 14.2.3) and that on the
torus any flow with nontrivial recurrence is equivalent to a flow under a function
built from a circle diffeomorphism.

We will use the following observation. Consider any compact orientable
surface M with a Riemannian metric. Then given a vector field X on M there
is a one-parameter family of vector fields R()X obtained by rotating X(p) by
an angle () at every point p. By orientability this is well defined. Obviously the
set of fixed points of R()X coincides with that of X.

Proposition 14.2.1. A fixed-point-free C 1 flow on the torus 1r2 admits a closed
transversal.

Proof. Fix a Riemannian metric on 1r2 and consider the vector field Z ==

R 7r / 2X perpendicular to X. If Z has a periodic orbit then this gives a closed
transversal to X. Otherwise Z has a positively recurrent nonperiodic orbit and
we use Proposition 14.1.3 to obtain an oriented transversal to Z that makes an
angle less than 1r / 4 with Z. But this then is also a transversal to X since the
angle with X cannot be zero. 0
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458 14. Flows on surfaces and related dynamical systems

Proposition 14.2.2. If a fixed-point-free flow with a nonperiodic recurrent
orbit on a closed surface admits a closed transversal then every orbit intersects
the transversal.

Proof. We will show that the set of points whose orbit intersects a transversal
T is open and closed in 1r2 . Note first that by Corollary 14.1.5 the return map
is defined on the entire transversal. Note that by compactness of T the return
times are bounded. Thus the set of points whose orbit intersects T is a finite
union of images of the closed set UtE[-E,E] <.pt(T), hence is closed. Likewise,

however, this set is also a finite union of open sets UtE(-E,E) <.pt(T), hence is
open. D

These two results now yield the advertised equivalence

Corollary 14.2.3. A fixed-point-free C 1 flow on 1r2 with a nonperiodic recur­
rent orbit is smoothly conjugate to the flow under a function over an orientation­
preserving circle diffeomorphism.

Proof. By Proposition 14.2.1 the flow admits a transversal T and by Proposi­
tion 14.2.2 every orbit intersects T. If we parameterize T by an angle () E Sl,
then the return map to T defines a circle diffeomorphism f. If the return time
of () is h(()), then we can coordinatize 1r2 by ((), y) with 0 :::; y < h((}) and in
these coordinates the vector field is ty ' that is, the flow is a special flow. D

This close relation to circle maps will allow us to apply results from Chapters
11 and 12. A first instance is the following classification.

Proposition 14.2.4. A C 2 fixed-point-free flow on 1r2 with a nonperiodic re­
current orbit is topologically conjugate to a time change of a linear flow.

Proof. By Proposition 14.2.1 there is a transversal, which we may assume to
be smooth, so the flow is conjugate to a special flow over a C 2 circle diffeomor­
phism. By Theorem 12.1.1 this diffeomorphism is topologically conjugate to a
rotation, so via Corollary 14.2.3 the flow is topologically conjugate to a special
flow over a rotation, that is, a time change of a linear flow on 1r2 . D

The complications we found in the theory of circle maps of regularity less
than C 2

, namely, the Denjoy example (cf. Proposition 12.2.1), arise in this
situation as well. Namely, the special flow over a Denjoy map from Section 12.2
is a flow on the torus which exhibits Denjoy-type behavior and in particular is
not topologically conjugate to a special flow over a rotation.

b. Area-preserving flows. In certain cases the topological conjugacy ob­
tained in Proposition 14.2.4 is actually a smooth conjugacy. We first consider
area-preserving flows, where the Poincare Recurrence Theorem 4.1.19 provides
the recurrence needed in the last two statements. .

Proposition 14.2.5. Let cpt be a e k flow of 1r2 preserving a C" area element
and let ti == min(k, r + 1). Then cpt is en conjugate to a special flow over a
circle rotation.
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14.2. Fixed-paint-free flows on the torus 459

Proof. Note first that the Coo transversal 7 obtained in Proposition 14.2.1 has
a emin(k,r) length parameter invariant under the return map by Proposition
5.1.11. Thus the return map is C" conjugate to a circle rotation by Proposition
12.4.4. By extending this conjugacy as in the proof of Corollary 14.2.3 we obtain
a en conjugacy to a special flow. 0

Note that a given linear flow can be represented as a suspension of different
rotations by choosing different transversals. It is easy to see, however, that
the rotation number depends only on the homotopy type of the transversal.
In particular consider the flow Tt

W and the transversal 7k,l that lifts to the
straight line with slope 1Ik. Then consider a linear transformation given by

A = (7 7:) with integers m, n such that det A = 1. The rotation number

with respect to the transversal 7k,l is the rotation number obtained from Tt
A -lw

using the horizontal transversal 71,0, that is, the reciprocal of the slope of A-IW,

which is given by :~~;+~~~. Notice that (m, n) is unique up to integer multiples
of (k, l), so this expression for the rotation number is well defined modulo
1. In particular the rotation numbers p and p' obtained from two different
transversals are related by a linear fractional transformation

, ap+b
p == cp + d'

where (~ ~) is an integer matrix with unit determinant.

Recall (Definition 2.8.1) that an irrational number 0: is called Diophantine if
there exist k, r > 0 such that for any nonzero p, q E Z we have Iqo: - pi > kq-r.
This property is invariant under linear fractional transformations.

Lemma 14.2.6. If Q is a Diophantine irrational and (~ ~) a nonsingular

. . h ao:+ b . D . hanii IIinteqer matrix t en ---d is top antine as we .
cn+

Proof. Note that by assumption a and c cannot both vanish. Thus we find

I
q ( an + b) _ pi == I (qa - pc)n + (qb - pd) I > klqa - pcl-

r
== k' > kIf

co + d co: + d [co + dl Iqa - pclr qr

since Iqa - pcl < const. q for those piq that approximate an + db well. 0
cn+

Returning to general area-preserving flows it is natural to ask, how to see
whether the smoothly conjugate special flow obtained in Proposition 14.2.5
is smoothly conjugate to a suspension. According to the Proposition 2.9.5 a
sufficient condition for that is that the base is rotated by a Diophantine angle.
Thus we have
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460 14. Flows on surfaces and related dynamical systems

Corollary 14.2.7. Let cpt be a CCXJ flow of 1r2 preserving a CCXJ area element
and that possesses a transversal such that the induced map has Diophantine
rotation number. Then cpt is CCXJ conjugate to a linear flow.

We will see in Section 14.7a how this question can be decided without refer­
ring to a section.

Exercises

14.2.1. Show that for a generic (dense G8) set of numbers p there exists a real­
analytic function cp such that the special flow under cp built over the rotation
R; is not CO flow equivalent to a linear flow.

14.2.2. Prove that every fixed-paint-free flow on the Klein bottle has a periodic
orbit.

14.2.3. Show that any recurrent orbit for a fixed-paint-free flow on the Klein
bottle is periodic.

14.2.4. Prove that for r 2: 0 there is a CCXJ flow on the torus that is C", but
not cr+1, orbit equivalent to a linear flow.

3. Minimal sets

The examples of minimal sets for flows on surfaces we have seen so far are
very limited. Of course fixed points and periodic orbits clearly occur for flows on
any compact surface. Furthermore the irrational linear flow on 1r2 is minimal.
Finally we have mentioned that minimal Cantor sets occur when one builds a
special flow over a Denjoy example. The latter is possible for C 1 but impossible
for fixed-point-free C 2 flows on the torus. In fact, we will now show that for
C 2 flows on any surface the first three examples are the only possible kinds of
compact minimal sets. This is a generalization of the Denjoy theorem and the
proof again uses a bounded distortion estimate.

Theorem 14.3.1. (Schwartz)1 Let M be a smooth surface, cpt a C 2 flow,
and A a nonempty compact minimal set. Then A is either a fixed point or a
periodic orbit or A == M.

Remark. Note that if A == M we can conclude that M is compact and cpt is
fixed-point-free, so by the classification of compact surfaces and the Poincare­
Hopf Theorem 8.6.6 M is either the torus or the Klein bottle. Exercise 14.2.3
excludes the latter possibility and thus M == 1r2 .

As the Denjoy-type flows on 1r2 show, the C 2 assumption is really needed.
We employ it as follows. A minimal set A has no proper closed invariant subsets,
so 8A == A or 8A == 0. Thus A is nowhere dense unless A == M. Thus we
need only rule out the possibility of Cantor-type sets, which we accomplish by
an argument similar to the proof of the Denjoy Theorem 12.1.1 using the C 2

hypothesis.
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14.3. Minimal sets 461

Proof. We assume for purposes of contradiction that A is a nowhere dense
compact invariant minimal set without fixed or periodic points. Let us take a
point in A and consider a Coo transverse segment T through this point whose
endpoints are not in A. By taking a flow box U1tl<E cpt (T) we identify T with
I == (-"7, "7) C ~ and Tn A with a compact nonempty nowhere dense subset C
of I. Thus W:==I" C is dense and a countable disjoint union of open intervals
(az,bz), lEN. If U is the set of x E I whose orbit returns to T at some time t > 0
but does not hit an endpoint of T for time 0 < s < t, then U is a neighborhood
of C in I and the return map f is well defined, injective, and continuous, in
fact C 2by transversality, on U. Since T is transverse to the vector field cjJt we
also have f' -=I 0 on U. If V is an open neighborhood of C whose closure is in
U then by compactness of V there exists K > 1 such that

1
K < If'l < K, If"l < K (14.3.1)

on V. Of course C is a nonempty compact invariant minimal set for f without
periodic points. Furthermore the set C :== UZEN{ai, bz } <, { -"7, "7} c C of end­
points is f-invariant as well. Thus if (az, bz) is a component of W, (az, bz) C U,
az -=I -"7, and bz -=I "7 then f((az, bz)) is also a component of W.

Now consider the distance

E:== d(C, aV) E (0,.,"7)

and note that the set Q of points az,bz E C such that bi - ai 2 E is finite. Thus
there exists an N E N such that fn(al) tt Q for n ~ N. Since 6 is invariant
there exists lEN such that fn(al) == az or fn(al) == bz. Thus (a, b) :== (az, bz)
has the property that t" ((a, b)) is a component of W of length less than E for
all n E N. This implies that

fn([a, b]) c V for n E N

since {a, b} c C. These intervals are pairwise disjoint since C contains no
periodic points and thus their lengths are summable. We will use this fact
now in a Denjoy-type argument which ultimately shows that there must be a
periodic point in C after all.

Proposition 14.3.2. Suppose f: [0,1] -t [0,1] is C 2 , K > O. Then there exists
C E ~ such that if I c [0,1] and {14.3.1} holds on U7=o fi(I) then

(fk+l)'(X) k i i

Ilog (Jk+l)'(y) I S C~ If (x) - f (y)1

for all x,y E I.
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462 14. Flows on surfaces and related dynamical systems

Proof. Since by the chain rule r:"(x) == 117=1 f'(fi(x)), the Mean Value
Theorem yields ~i C fi((p, q)) such that

i=O

k

== L If' (~i) 1-1
/f" (~i) I . Ir(p) - t' (q)I

i=O

k

< K 2 L Ifi(p) - fi(q)l,
i=O

by (14.3.1). o
For later use we note the following immediate consequence:

Lemma 14.3.3. If f: [0, 1] ~ [0,1] is a 0 2 map and I has pairwise disjoint
images then the w-limit set of I contains a critical point.

Suppose n E Nand [p, q] C [s, t] C V such that fk([s, t]) C V for °~ k ~ n.
Then by Lemma 14.3.3

I
fk+l: (p) I < exp (K2~ li(p) - i(q)I).
fk+l (q) - ~

(14.3.2)

(14.3.3)

We first use this observation to show that If i ' (a) / is summable. To that end note
that by the Mean Value Theorem there exist ~i E (a, b) such that fi(b) - fi(a) ==

t" (~i) . (b - a) and hence

00 00

(b - a) L Ifi' (~i)1 == L Ifi(b) - fi(a)1 < 21]
i=O i=O

since the intervals fi((a, b)) are pairwise disjoint. Since by (14.3.2) we thus
have Ifi'(a)1 ~ Ifi'(~i)le2K211, we have shown

1:S d:= :Eli'(a)l:S b
2

1] e2K211.
-a

i=O

We want to see that (14.3.3) implies

lim i' (x) = 0 uniformly for Ix - al :S 8:= K2d~ ) < 3
Ed

< E. (14.3.4)
z-+oo 3 1 + 1]

To this end we show
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14.3. Minimal sets 463

Lemma 14.3.4. For all n E N

(1) fn([a - 8,a + 8]) c V,
(2) Ifn(x) - fn(a)1 < E when Ix - al ::; 8,
(3) IfnI (x) I ::; elfnl(a) I when Ix - al ::; 8.

Note that (3) indeed implies (14.3.4); (1) and (2) are only used for purposes
of induction in the proof.

Proof. We proceed by induction. For n == 0 the claim is trivial. Suppose it
holds for k ::; n. We first show (3) for n + 1. Equation (14.3.2) yields

n

Ir+l'(x)1 < Ir+l'(a)1 exp (K2 l: Ijk(x) - jk(a)l)
k=O

and the Mean Value Theorem together with (3) yields
n n n
l: Ifk(x) - fk(a)1 ::; Ix - all: If

kl
(~k)1 ::; 31x - all: If kl(a)l·

k=O k=O k=O
By (14.3.3) we get

If n+1' (x)1 < If n+1' (a)le3K2d8 < If n+1' (a)le~ < elfn+11(a)l,

proving (3) for n + 1.
To prove (2) note that by the Mean Value Theorem and (3) we have

If n+1(x) - fn+1(a)1 ::; Ix - al . If n+1' (~)I ::; 38If n+1' (a)1 ::; 3d8 < E,

proving (2).
Finally, since fn+1(a) E 0, (2) and the choice of E imply (1). D

Now we can finish the proof of the theorem. Since 0 is minimal there exist
infinitely many kEN such that Ifk(a) - al ::; 8/2. For large enough such k we

have Ijk' (x)1 < 1/2 for Ix - al < 8 by (14.3.4) and hence Id~ (Jk(x) -x)1 > 1/2,

so fk(x) - x changes sign on [a - 8, a+8] and hence has a zero z E [a - 8, a+8].
We could of course use the Contraction Mapping Principle, Proposition 1.1.2,
but in the one-dimensional case the Intermediate Value Theorem is sufficient.
Thus fk(z) == z and furthermore fkn(a) ) z by (14.3.4). Since a E 0 and

n---+oo
C is closed and invariant we conclude that z E 0 contrary to the assumption
that 0 contains no periodic points. This proves the theorem. D

Exercises

14.3.1. Given an orientable surface of genus 9 and 1 ::; k ::; 9 show that there
exists a 0 1 flow with exactly k nowhere-dense minimal sets that are not fixed
points or circles.

14.3.2. Show that any 0 1 flow on the orientable surface ofgenus 9 has no more
than 9 different minimal sets that are not fixed points or periodic orbits.
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464 14. Flows on surfaces and related dynamical systems

4. New phenomena

New types of dynamical behavior appear for smooth flows on the torus with
fixed points and for flows on surfaces of higher genus.

a. The Cherry flow. 1 Now we show that in the presence of fixed points
behavior that produces Denjoy-type minimal sets on transversals to the flow
appears for arbitrarily smooth flows on the torus. The idea is to modify a linear
flow in such a way that there is a transversal containing a dense set of points
which return to the transversal only finitely may times and are then attracted
to a fixed point. The remaining points form a Cantor set which then inevitably
exhibits Denjoy-type behavior and consists of points that have a saddle in their
orbit closure. This example is then easily modified to give a flow on a surface of
genus 2 that has no attracting fixed points and two saddles and exhibits similar
phenomena.

Here is a description of this construction. Consider a local vector field on
a disk D l C ]R2 with a saddle-node phase portrait as in Figure 7.3.4 and
interpolate it via bump functions to the constant vector field X = (0,1) outside
a neighborhood D 2 of D l • Take D 2 of diameter € and rotate the vector field by
tan-1o. Translate D 2 to the center of the unit square [0,1]2 and project the
restriction to [0, 1]2 of this vector field to y2 = [0, 1]2/Z2. This gives a vector
field X o with a node p and a saddle s in a disk D c 1f2 which is constant outside
D. If € and a are not too big then there will be an interval [a, b] C {OJ X 8 1

such that a,b E WS(s), w(y) = p for y E (a, b) x 8 1 and the return map on
{OJ x 8 1 is well defined outside [a, b]. Note that this map extends (by constant
interpolation across [a, b]) to a continuous monotone circle map fo of degree one,
hence has rotation number ,(fo) depending continuously on this construction.
Modifying X o on [1 - d, 1] X 8 1 we can make D f(x) > 1 outside [a, b].

Let us show that we can make ,(fo) irrational. Let Y,\ = (0, h(x)) be a Coo
vector field on ]R2 with supp(h) C [1 - d, 1] such that the map induced between
{OJ x 1R and {I} x ~ by the flow of (coso, 0) + Y,\ is a translation by A. The
vector fields X,\ = X o + Y,\ generate flows on 1f2 with induced circle maps f,\
which lift to F,\ on ~ such that ,(Fl ) - ,(Fo) = 1, and hence there is a Ao for
which ,(f,\o) ¢ Q. Let f := fAo·

We call the basin T = {q I w(q) = p} of the sink the tail and its complement
A = y2 ,T the Cherry set. To see that K :=An({O}X 8 1) is a Cantor set let K o C
K be a maximal closed interval and K n := fn(Ko). Then l(Kn+ l ) ~ l(Kn) and
KinKj = 0 since otherwise we have inclusion by maximality and thus a periodic
point of f by Lemma 15.1.2, which is impossible since ,(f) ¢ Q. But then we
must have l(Ko) = 0 and K has empty interior. Next the pairwise disjoint
intervals In := fl-n((a, b)) have dense union in {OJ x 8 1 and the endpoints
belong to different components of W:=WS(s), {s}, so each of these components
is dense in A and a(x) = A for x E W. This shows that K is perfect, hence a
Cantor set.

For the reversed flow the Cherry set is an attractor of a type we have not
encountered in the Poincare-Bendixson setting or in fixed-point-free toral flows.
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14.4. New phenomena

FIGURE 14.4.1. The Cherry flow

465

It is useful to define a quasi-minimal set to be a set containing finitely many
fixed points and such that every semiorbit that is not attracted to a fixed
point is dense in the set. We can summarize our discussion by saying that the
nonwandering set of the Cherry flow consists of an attracting fixed point and a
quasi-minimal set containing a hyperbolic saddle. We will see later that quasi­
minimal sets are a typical phenomenon for flows on surfaces of higher genus,
including area-preserving ones. They produce minimal sets for the Poincare
return map on closed transversals with an appropriately modified topology (see
Section 14.5b and Exercise 14.5.2).

The Cherry flow can be modified to produce a flow on the double torus, that
is, the sphere with two handles attached: Remove a small neighborhood of the
attracting fixed point and consider a second copy of the torus with the same
disk removed and the flow reversed. Then these flows can be glued together
along the boundaries of the two disks to give a flow on the double torus which
has no attracting or repelling fixed points, two saddles, and two disjoint closed
invariant nowhere-dense quasi-minimal sets C+ and C- containing a saddle
each. For every point x outside these two sets the a-limit set is C- and the
w-limit set is C+. This flow is obviously not area preserving. Next we will
consider an interesting example of an area-preserving flow on the same surface
of genus 2.

b. Linear flow on the octagon. If one views the linear flow on the torus
as a flow on the unit square whose orbits are parallel, one can naturally try
to generalize this construction by replacing the square with another centrally
symmetric polygon with opposite sides identified by translations and considering
the linear flow on the interior extended to the closed surface obtained from the
identification. In order to obtain a smooth, or even only continuous flow, certain
care has to be taken in defining the flow near the vertices. However, from the
point of view of the global orbit structure and the recurrence behavior of the
nonfixed points this is not particularly important.
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466 14. Flows on surfaces and related dynamical systems

For this kind of construction the next obvious candidate after the square is a
regular hexagon. One can see, however, that this construction produces nothing
new: The translations of the hexagon tile the plane and the three translations
identifying opposite pairs of sides are rationally related, namely, their sum is
zero. Thus the group generated by these translations is simply the lattice whose
generators are two vectors of equal length at an angle 1r/3. This allows us to
extend the linear flow to the tiled plane and to view it as a linear flow on the
factor by the lattice with two generators, which is again a torus.

To produce a new phenomenon we will consider the next candidate, namely,
the regular octagon. It has four pairs of opposite sides which are identified
by translations. The translation vectors have equal length and their mutual
angles are multiples of 1r/4. It is easy to see (cf. Exercise 14.4.3) that the
group generated by these translations is not discrete, that is, when we apply
the translations to the octagon we will return and cover every point infinitely
many times.

When opposite sides of the octagon are identified, all eight vertices are glued
together. Notice that from the topological point of view this construction is
equivalent to the construction of the genus-two surface from the hyperbolic
octagon in Section 5.4e, so the surface thus obtained is homeomorphic to the
sphere with two handles. We will give another proof of this fact by constructing
a vector field on the surface and calculating its Euler characteristic. This will
be the vector field we will later study from the dynamical point of view. Pick
a direction in the plane not parallel to any side and take a family of oriented
line segments inside the octagon parallel to this direction. The identification of
parallel sides allows us to glue those line segments together, except for the ones
beginning and ending in a vertex. There are exactly three segments beginning
in a vertex and three segments ending in a vertex. A neighborhood of the vertex
in the identification space consists of eight sectors glued together in such a way
that incoming and outgoing segments alternate and divide the neighborhood
into six sectors. No other orbit crosses any of the separating lines. Thus the
picture of the orbits near this special point looks similar to the example showed
in Figure 8.4.1, except for having six separatrices rather than eight. By making
an appropriate time change the flow can be made into a smooth flow with a
double saddle.

Now we will give a description of a natural differentiable structure in a neigh­
borhood of the identified vertices which will also provide a natural time change
for the flow. The problem is that the Euclidean differentiable structure does
not behave well under the projection to the identification space because the
total angle is 61r rather than 21r. In the construction on the hyperbolic plane
in Section 5.4e the total angle was indeed 21r. In our case the natural way to
fix this is to introduce a complex coordinate w on the neighborhoods of the
vertex in the octagon such that the standard Euclidean complex coordinate
Z == x + iy is given by z - Zo == w3, where Zo is the coordinate of a vertex.
Gluing the edges together with these local coordinates gives a total angle of 21r
in the factor. Note that on any open set not containing a vertex the coordi-
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14.4. New phenomena

FIGURE 14.4.2. Linear flow with separatrices

467

nate w is locally differentiably compatible with z, so we have indeed defined a
differentiable structure on the surface. We can, in fact, describe the Euclidean
area in the coordinate w explicitly. Namely, if z == x + iy then the Euclidean
area is given by dx /\ dy. If w == u + iv then z == w 3 == u3

- 3uv2 + i(3u2v - v 3
)

and thus

We will now use the fact (which follows from Proposition 5.1.9) that if the
flow of a vector field v preserves a volume pO then the flow of pv preserves
O. Thus in a neighborhood of the vertex we can multiply the vector field by
(3u 2 +3V2 ) 2 == 91wl4 to get a vector field that preserves the standard Euclidean
area element of the w-coordinate in the neighborhood. To obtain a vector
field on the surface that preserves a smooth area element we multiply by a
function p that has the following properties: On a small neighborhood of the
vertex p is equal to the scalar factor we just described. Outside a slightly
larger neighborhood we set p == 1 and interpolate smoothly. The resulting
flow preserves Euclidean area outside a neighborhood of the vertex and the w­
standard area on a small neighborhood of the vertex. In a small collar around
the vertex the invariant area is a smooth multiple of Euclidean area.

Let us now show that the vector field we have thus defined is, in fact, a
smooth vector field. Note that the only problem is at the vertex, so we need to
check smoothness there. In z coordinates the original vector field is given by
a constant vector field Y == (a, b). The coordinate change is given by z == w 3 ,

whose derivative is given by Y == 3w 2 X or X == Y/(3w 2 ) . Thus the scaled
vector field is given by 91wl4X == 9w2w2Y/(3w2 ) == 3w 2 y , which is indeed a
smooth vector field with a saddle having six separatrices.

Let us now consider the return map to a convenient transversal. As a
transversal we take a line connecting the midpoints of two opposite segments
of the boundary and such that the angle Q between the transversal and the
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468 14. Flows on surfaces and related dynamical systems

vector field is in Crr/4,1f/2). Note that on a neighborhood of such a line the
flow-invariant volume is the Euclidean volume, since we are away from the ver­
tex. Consequently the naturally induced volume is just (a constant multiple
of) the length element. Consider now the return map to this transversal. It is
continuous except at those three points that lie on segments of the flow ending
on the saddle. Otherwise the return map is piecewise orientation preserving
and, since the invariant volume induces the length element, the image of any
interval not containing a point of discontinuity has the same length as the in­
terval itself. Thus the restriction of the return map to every interval without
points of discontinuity is a translation and we have a particular case of the
situation described in Corollary 14.1.7. Topologically this transversal is a circle
and it is the union of the closures of three intervals ~1, ~2, and ~3 with­
out discontinuity points whose lengths are correspondingly 11 == 1/(1 + V2),
12 == (1 + cot a) / (2 + V2), and 1 - 11 - 12 , if we take the transversal to have unit
length.

FIGURE 14.4.3. The induced map

The one-parameter family of linear flows we discussed here can also be ob­
tained by considering the billiard problem on a triangular table T with angles
tt /2, 1f/8, and 31f/8. Denote the vertex with angle 1f/8 by v. Note that by
reflecting the triangle repeatedly in a side adjacent to the vertex 11 we obtain
an octagon centered at v as a union of 16 copies of T.

Consider an orbit of the billiard in T. Reflecting it in the edges of T, as
required, amounts to continuing along a straight line into a reflected copy of T.
When the orbit hits the edge of the octagon, reflection in the boundary of T
amounts to jumping to the opposite side and continuing in the same direction,
that is, the continuation of the orbit corresponds exactly to the translation of
the orbit to another copy of the triangle in the opposite orientation. Thus the
orbit lifts exactly to an orbit of the linear flow on the octagon of the slope of the
billiard orbit. We have thus established a one-to-one correspondence between
the collection of orbits of the billiard in the triangle on the one hand and the
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14.4. New phenomena

FIGURE 14.4.4. The octagon decomposed

469

collection of all orbits of the various linear flows on the octagon. It is good to
note that the orbits for a fixed linear flow on the octagon correspond to billiard
orbits whose angles with respect to a fixed side take at most 16 values, namely,
for a given angle ex we obtain the angles ±ex + kr: / 4, that is, the angles obtained
by reflecting ex with the various reflections we used to generate the octagon.

We will soon prove a general result (Corollary 14.6.6) which implies that for
all but countably many directions the linear flow on the octagon is topologically
transitive and quasi-minimal. This is similar to the situation for linear flows on
the torus (see Proposition 1.5.1).

Exercises

14.4.1. Given an orientable surface of genus 9 and 1 :S k :S 9 show that there
exists a C OCJ Bow with exactly k nowhere-dense quasi-minimal sets that are not
circles.

14.4.2. Show that any COCJ Bow on the orientable surface of genus 9 has no
more than 9 different quasi-minimal sets that are not fixed points or circles.

14.4.3. Prove that the orbit of any point with respect to the group generated
by translations identifying opposite sides of the regular octagon is dense.

14.4.4. For the linear Bow on the octagon consider the transversal given by a

diagonal (a diameter) of the octagon. Discuss the map on it induced by the Bow
by describing the topology of the transversal, giving the lengths of the maximal
intervals without discontinuities and the way in which they are permuted.

14.4.5. Generalize the construction of Subsection b to the regular 2n-gon (n 2:
4). Calculate the genus of the resulting surface and the number and indices of
the fixed points for the Bow, and describe the differentiable structure that makes
a time change smooth.
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470 14. Flows on surfaces and related dynamical systems

5. Interval exchange transformations

a. Definitions and rigid intervals. The return map for the linear flow on
the octagon is an example of the maps that appear as section maps of area­
preserving flows on surfaces with finitely many saddles (see Corollary 14.1.7).

Definition 14.5.1. Consider a permutation 1r of {I, ... , n}, a vector v ==
(VI, , vn ) in the interior of the unit simplex, that is, such that Vi > 0 for
i == 1, , n and L~=I Vi == 1, and a vector E == (EI, .•• , En) whose coordinates
are either 1 or -1. Let Uo == 0, u.; == VI +...+Vi for i == 1, ... ,n, ~i == (Ui-I, Ui)

for i == 1, ... , n. The interval exchange transformation I V , 1r , E : [0, 1] -+ [0,1] is
the map that is continuous and Lebesgue-measure preserving on every interval
~i, rearranges those intervals according to the permutation 1r, and preserves or
reverses orientation on ~i according to the sign of Ei (i == 1, ... , n). If Ei == 1
for all iwe write I v , 1r instead of I v , 1r , E . Such a map will be called an oriented
interval exchange transformation.

Remark. One can similarly define an arc exchange transformation of the cir­
cle. Obviously every arc exchange transformation of n arcs is also an interval
exchange transformation of n + 1 intervals.

Thus the map I v , 1r , E restricted to each interval ~i is either a translation of
~i (if Ei == 1) or a reflection with respect to a point (if e; == -1).

The return map to the midpoint transversal for the linear flow on the octagon
with slope a with respect to the horizontal is an interval exchange of four
intervals (obtained from an exchange transformation of three arcs of a circle).

While talking about interval exchange transformations it is convenient to
use the term "partition" in an extended sense as a decomposition of [0, 1] or an
interval ~ C [0,1] into intervals with piecewise disjoint interiors. If two succes­
sive interiors ~i and ~i+I are mapped to ~k U ~k+I preserving orientation or
to ~k U t1k - I reversing orientation, then we can lump ~i U ~i+I together and
consider Iv,rr,E as an exchange of a smaller number of intervals. Thus, without
loss of generality we may always assume that UI, ..• , Un-I are discontinuity
points of I and that the partition ~ :== ~(I) is the partition into intervals of
continuity of I.

There is an ambiguity in the definition of the map I V , 1r , E at the points of
discontinuity, that is, at UI, U2, ... ,Un-I. Sometimes there is a natural way to
extend the definition to some of those points and obtain a one-to-one map. For
example, fo~ n == 2, 1r == (2,1), there is only one discontinuity point VI inside
the interval and if we set I v , 1r (VI) == 0 then by identifying 0 and 1 we obtain the
rotation of the circle by the angle 21rV2. More often, however, such a natural
extension is not possible as in the octagon example in Section 4b. A more useful
approach is the following. At each point Ui of discontinuity the map I v , 1r , E has
left and right limits, which we will denote by wi and wi, correspondingly. It
makes sense to think of the point u, as having two "ends" and of wi and wi
as the images of those "ends".
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14.5. Interval exchange transformations 471

Definition 14.5.2. An interval exchange transformation 1 == 1v , rr ,€ is said to
have a saddle connection if for some i, j E {O, ... , n} and for some kEN we
have jk(wt) == Uj (correspondingly, 1k(wi ) == Uj) but 1i (wt ) (correspond­
ingly, I' (wi)) are points of continuity for 0 < I < k. The orbit segment
iu, wt, 1(wt), ... ,1k - 1(wt), Uj (correspondingly, iu: wi , ... ,1k - 1(wi), Uj) is
called a connecting segment. Let us call a permutation 1f of {I, ... ,n} irreducible
if it does not preserve any subset of the form {I, ... , k} for k == 1, ... , n - 1.
An 'open interval ~ C [0,1] is called rigid under 1 if all positive iterates of 1 are
defined and continuous on ~. A rigid interval ~ is a maximal rigid interval if
any other rigid interval is either disjoint from it or contained in it. An interval
exchange transformation is called generic if it has no rigid intervals. A point
x E [0, 1] is called a generic point for 1 if all positive and negative iterates of x
are defined, that is, no image or preimage of x is a discontinuity point.

Evidently we have

Lemma 14.5.3. The number of different connecting segments for any interval
exchange transformation 1v , rr ,€ does not exceed 2n - 2, where n is the number
of intervals of continuity.

Lemma 14.5.4. Any rigid interval ~ for an interval exchange transformation
1 consists of periodic points. Any maximal rigid interval either consists of points
of the same period or all of its points except for the midpoint have even period
2k while the midpoint has period k ..Any endpoint of a maximal rigid interval
belongs to a connecting segment.

Proof. It suffices to consider maximal rigid intervals since the union of rigid
intervals intersecting a given rigid interval ~ is again a rigid interval and clearly
maximal.

For any rigid interval ~ any image 1k (~) is an interval of the same length and
if ~ is maximal then 1k (~) n ~ is either empty or equal to ~. If 1k (~) n~ == 0

for all k then 1k(~) n 1i(~) == 0 for all k, I 2: 0 by invertibility and continuity
of 1 on every image of A. But this is impossible since the sum of the lengths of
these intervals is infinite. Thus there exists kEN such that 1k (~) == ~. Since
1k preserves Lebesgue measure and is continuous on ~, it is either the identity
transformation or the reflection in the midpoint, which is thus fixed, and 12k is
the identity on ~.

Let x be the left endpoint of A, 1k (correspondingly, 12k ) must be discon­
tinuous at x because otherwise it would be the identity on a neighborhood of
x, contradicting maximality of~. The same argument applies to 1- k (corre­
spondingly, 1-2 k ) . Since discontinuity appears only when the image of a point
is one of the points Ul, ... ,Un-I, we see that x belongs to a connecting segment.
The same argument applies to the right endpoint of ~. D

Thus we can associate with any maximal rigid interval its orbit, that is, the
union of its images. Since for an exchange transformation of n intervals the
number of different connecting segments does not exceed 2n - 2 and the same
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472 14. Flows on surfaces and related dynamical systems

connecting segment can only be an endpoint for one maximal rigid interval,
there are at most 2n - 2 maximal rigid intervals whose orbits are different.

Corollary 14.5.5. If an interval exchange transformation has no saddle con­
nections then it is generic.

Corollary 14.5.6. On any rigid interval Ll all (positive and negative) iterates
of I are defined and continuous.

The joint partition (,:'m :=(,VI-I ((,)V· .. V I 1- m ((,) into intervals of continuity
of Ik, k = 1, ... ,m, consists of at most men - 1) + 1 intervals and exactly this
many if there are no saddle connections. For the nested sequence (,:'m' mEN,
there is an obvious dichotomy:

(1) maxcEe~ml(c) ~°as m --+ 00, where l(·) is the length. This happens
for generic interval exchange transformations.

(2) There is a nested sequence of elements Cm E (,:'m such that Coo :=

n:=l Cm is an interval of positive length. Then Coo is the closure of a
maximal rigid interval and obviously any maximal rigid interval appears
in this way.

b. Coding. Let L be the union of the closures of all maximal rigid intervals.
The partition (, offers a natural way of coding the interval exchange transfor­
mation on the invariant set [0,1] "L. Namely, let

!h := {w EOn I n /-m(Aw".+l ) =J 0}.
mEZ

(14.5.1)

0/ is closed (Exercise 14.5.1) and obviously shift invariant. If I is generic then
the map h: 0/ ~ [0,1], W M nmEZ I-m(Llw m +1 ) is a finite-to-one continuous
surjective map and injective on preimages of generic points. If I has no saddle
connection then any nongeneric point has exactly two preimages. Otherwise 2n

is obviously an upper bound for the number of preimages of a point.

If I has rigid intervals then h is not defined on 0/. However, it is still defined
and continuous on the complement of finitely many periodic orbits correspond­
ing to the orbits of maximal rigid intervals, and its image is [0,1] "L. Even
though this map cannot be extended to a semiconjugacy between a symbolic
system and I, it is a measure-theoretic isomorphism for any nonatomic ergodic
shift-invariant measure on OJ since both the set of discontinuity and the set of
nonuniqueness can only carry atomic ergodic measures.

Notice the analogy to the measure-theoretic classification of circle maps (The­
orem 11.2.9) in the nontransitive case.
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14.5. Interval exchange transformations 473

c. Structure of orbit closures. We will use notions from topological dynam­
ics, such as recurrence, freely in the sequel. Although these were defined for
continuous maps this is justified because on one hand these definitions do not
require continuity and we do not use properties that do, and on the other hand
because we have a symbolic model at hand, where all these notions appear in
the standard way.

The construction of the first-return map plays a very important role in the
study of interval exchange transformations. This is due to the following lemma
which shows that the class of interval exchange transformations is closed under
the operation of inducing (taking the return map) on subintervals and the
number of intervals increases by at most 2.

Lemma 14.5.7. Let I be an exchange transformation of n intervals or arcs of
the circle. Then for any interval (or arc) ~ the first-return map I Dt,. is defined
and continuous everywhere except for at most n + 1 points and is an exchange
transformation of k :S n + 2 intervals.

Proof. By the Poincare Recurrence Theorem 4.1.19 the set of points that re­
turn to ~ has full Lebesgue measure and is hence dense. Suppose x E ~ is such
that y == IDt,.(x) == Ik(x) E Int(~) and Il(x) (0 ~ 1< k) are points of continuity
of I. Then I k is a local isometry near x and hence maps a neighborhood of x
onto a neighborhood of y in A. On the other hand, minl<l<k dist(Il(x),~) ==
E > 0, so IDt,. == I k in a neighborhood of x. Thus IDt,. is continuous at x, hence
IDt,. is defined and continuous on an open set.

Let z be the left endpoint of a maximal interval where IDt,. is defined and
continuous. This means that I~ == I k in a one-sided neighborhood of z for
some k. But if Il(z), 0 :S 1 :S k are points of continuity of I and not endpoints
of ~ then I k(z) E Int ~ and by the previous argument I Dt,. == I k in a two-sided
neighborhood of z, a contradiction. Thus an iterate Il(z) for 0 :S 1 :S k is either
a point of discontinuity of I or an endpoint of A. Consider the smallest such
l. Each of the n - 1 points of discontinuity of I and each of the two endpoints
of ~ can appear in this way as an iterate of at most one left endpoint of an
interval of continuity of IDt,.. Thus IDt,. is defined away from at most n + 1 points
in Int ~ and is an isometry on the complementary intervals. 0

Remark. The above argument essentially reproves Proposition 14.1.6 in the
setting of interval exchange transformations.

Corollary 14.5.8. Every generic point for an interval exchange transforma­
tion is recurrent.

Now we can prove our first important finiteness result for interval exchange
transformations.

Proposition 14.5.9. Let x be a nonperiodic recurrent point for an interval ex­
change transformation I. Then the complement of the orbit closure of x consists
of finitely many intervals whose endpoints belong to connecting segments.
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474 14. Flows on surfaces and related dynamical systems

Proof. Let ~ == (a,b) be such a complementary interval. By Lemma 14.5.7 I~

is defined at all but finitely many points of ~, so the right-hand limit I~(a+)
at a of I ~ (x) is well defined. There are two possibilities:

(1) I~(a+) E Int A, Then I~(a+) == Ik(a+) for some minimal k > o. If I k

is continuous at a then I k is an isometry near a and hence points from
the orbit of x that accumulate at a are mapped to points accumulating
on I k (a) E Int A, a contradiction. Thus I l (a) is a discontinuity point
of I for some 1 < k.

(2) I~(a) E a~, that is, I~(a+) == a or I~(a+) == b. In the first case
I~ == I k == Id in a right-hand neighborhood of a. If a is a continuity
point of I k then I k == Id on a neighborhood of a contrary to the fact
that nonperiodic recurrent orbits accumulate on a; hence an iterate of
a is a discontinuity point of I. The case I~ == I(a+) == b reduces to the
previous one or (1) by considering e.

Thus we find in all cases that the positive semiorbit of a contains a discontinuity
point of I. The same argument and conclusion apply for I-I, so a belongs to a
connecting segment. By symmetry the same holds for b. D

Corollary 14.5.10. Every generic orbit is either periodic or its orbit closure
is a finite union of intervals.

Corollary 14.5.11. For a generic interval exchange transformation the closure
of all but finitely many orbits is a union U of finitely many intervals. The orbit
of any generic point in U is dense in U.

Corollary 14.5.12. If an interval exchange transformation does not have sad­
dle connections then every generic orbit as well as every semiorbit that does not
contain a discontinuity point is dense.

Note that the latter corollary describes a situation as close to topologically
minimal as it could be for an interval exchange. In fact, the symbolic model OJ
is a minimal set in this case (Exercise 14.5.2).

Let us call the orbit closures consisting of finitely many intervals (of nonzero
length) the transitive components of the interval exchange transformation I.
The interiors of different transitive components are disjoint. Similarly let us
call the orbit of a maximal rigid interval a periodic component. We thus have
found that all points, except maybe those lying on connecting segments, have
to belong either to a transitive or to a periodic component. It follows from
Lemma 14.5.4 and Proposition 14.5.9 that the boundary of each (transitive or
periodic) component consists of complete connecting segments. The number of
connecting segments does not exceed 2n - 2. Each connecting segment may
belong to the boundary of at most 2 components. Thus the total number of
components does not exceed 4n - 4. Furthermore in the oriented case each
connecting segment comes with two orientations and the boundary of each
component must contain at least one positively oriented and one negatively
oriented segment, which decreases the possible number of components to 2n - 2.
Thus the topological structure of orbits of interval exchange transformations can
be summarized as follows:
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14.5. Interval exchange transformations 475

Theorem 14.5.13. Let I be an exchange map of n intervals. Then [0,1] splits
into a finite union of connecting segments and k ::; 4n - 4 disjoint open invariant
sets each 01 which is either a transitiue or a periodic component and is a finite
union of open intervals. If in addition I is oriented then k.::; 2n - 2.

d. Invariant measures. The last theorem gives a topological finiteness result
for interval exchange transformations. In fact, every transitive component is
quasi-minimal: Any semiorbit that does not begin or end in a discontinuity
point is dense in it. A corresponding measure-theoretic property would be
uniqueness of the nonatomic invariant measure on a transitive component. We
shall see in the next subsection that this is not the case even under the stronger
assumption of no saddle connections. Nevertheless there is the following general
finiteness result for invariant measures:

Theorem 14.5.14. Let I be an exchange transformation of n intervals. Then
there are at most n mutually singular invariant nonatomic Borel probability
measures for I supported on the union of the transitive componenisF

Corollary 14.5.15. There are at most n distinct invariant nonatomic ergodic
Borel probability measures for I.

Corollary 14.5.16. For a generic interval exchange there are no more than n
disjoint invariant sets of positive Lebesgue measure.

Proof. Since such a measure is supported on the transitive components, the
joint partitions constructed from ~ are dense with respect to the metric V of
(4.3.9), so ~ is a one-sided generator. (See Section 4.3 for a general discussion.)
Thus an invariant measure is determined by its values on the elements of the
joint partitions ~fn. The key observation is that it is indeed determined by
its values on the intervals in~. Namely, these determine the measures of the
elements of the joint partition ~ V I(~) as follows: Start from the left endpoint
and notice that the first interval of ~ V I (~) is the shorter of the leftmost interval
of ~ and the leftmost image of an interval in ~, so its measure is determined.
The next interval is again the shorter of the remainder of the other interval
on the left and the next image, and so forth. Similarly we can proceed by
induction to determine from the values of the measure on the intervals of ~ V
... V In(~) and ~ those on the intervals of ~ V ... V In+l by superimposing
I(~ V ... V In(~)) on ~. This defines a map h from the I-invariant measures to
the (n - 1)-dimensional simplex G" in IRn which is evidently affine, continuous
(in the weak* topology), and, as we saw, injective. Let us note that mutually
singular measures correspond to linearly independent elements of G". Namely, if
a1h(J-ll) + ... + alh(J-ll) == 0 then on a set A with J-li(A) > 0 and /Lj(A) == 0 for
i i- j we have 0 == alJ-ll(A) + ... + alJ-ll(A) == aiJ-li(A), whence a.; == o. D

Remark. The image of this set of measures is always a simplex and its vertices
correspond to ergodic measures.
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476 14. Flows on surfaces and related dynamical systems

Let us notice that different invariant measures for an interval exchange gen­
erate conjugacies between this and other interval exchanges. To facilitate this
discussion assume the interval exchange is topologically transitive, which is
weaker than absence of saddle connections but stronger than being generic. In
this case every nonatomic invariant measure is positive on open sets, and hence
the map taking an interval [0, t] to its measure is a homeomorphism and takes
this interval exchange to another one such that the image of the given invari­
ant measure is Lebesgue measure. Thus, if a topologically transitive interval
exchange has k ergodic invariant measures then we have a (k - I)-simplex of
topologically conjugate interval exchanges.

e. Minimal nonuniquely ergodic interval exchanges. We will soon see
that the absence of saddle connections which (by Corollary 14.5.12) implies es­
sential minimality, is a typical property in many families of interval exchange
transformations. We now give an example of an interval exchange transfor­
mation that has no saddle connections and is not uniquely ergodic. Both the
method of construction and the result are very similar to those that appear in
Corollary 12.6.4. Suppose s: [0, 1] --t {O, I} == Z/2 has three points of disconti­
nuity. Then the extension

Is: [0,1] x {O, I} --t [0,1] x {O, I}, Is(x, i) :== (I(x), i + s(x))

of an exchange I of m intervals can be viewed as an exchange of the at most
2( m + 3) intervals obtained from the two copies of the (at most m +3) intervals
defined by subdividing the intervals of continuity of I, if necessary, at the
discontinuity points of s. Our example then becomes a corollary of the following
coboundary construction:

Theorem 14.5.17. Let I be an oriented interval exchange transformation
without saddle connections. Then there is a function s: [0, 1] --t {O, I} with
three discontinuity points such that

(i) s(x) == h(I(x)) - h(x) for some measurable h: [0,1] --t {O, I}, and
(ii) for 0 C [0,1] open A(h- 1 ( {I}) n 0) > 0, A(h- 1 ( {O}) nO) > 0. 2

Thus h is metrically dense (Definition 12.6.2) and s is exactly a wild cobound­
ary, similarly to Proposition 12.6.3. Thus, similarly to Corollary 12.6.4 we
obtain our desired example:

Corollary 14.5.18. The interval exchange given by the extension Is corre­
sponding to s has no saddle connections and is not ergodic.

Proof. By (i) of Theorem 14.5.17, s is a measurable coboundary and hence
Is is metrically isomorphic to I x Id via (x, i) t---1- (x, i + h(x)), so Is preserves
graphh and graph(1 - h), both of positive (product) measure. On the other
hand we can see that there are no saddle connections by considering a point wi
(as before Definition 14.5.2) and noting that its positive I-semiorbit is dense
by Corollary 14.5.12, so by (ii) of Theorem 14.5.17 it is dense for Is and hence
not part of a connecting segment. Points wi are taken care of similarly and
evidently no points outside the positive semiorbit of the w; could be part of a
connecting segment. 0
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14.5. Interval exchange transformations 477

Proof of Theorem 14.5.17. We will use addition modulo 1, that is, we are
allowed to switch + and - signs. Replacing I by I-I we may replace (i) by

(i') s(x) == h(I-1(x)) - h(x).

We call an interval ~ C [0,1] k-clear if Ii is continuous on Int ~ for Iii::; k.
For n E No let an :== In(o). Due to the absence of saddle connections this
sequence is well defined and by Corollary 14.5.12 dense in [0,1]. For an < am
let Xm n == X[ ) be the characteristic function., an,aTn

We now begin an inductive construction similar to that of Proposition
12.6.3, although more explicit. First let ko == 0 and k 1 > °be such that
[ao,ak 1] n [aI, ak1+1] == 0. Inductively we will determine an increasing sequence
{km}mENo and a related sequence Im defined by

m-l
Io == 1, II == k 1 +1, Im+l == km+l-km+lm-l, that is, t-, == 1+ L (-l)ikm _ i

i=O

so that

(1) ako < ... < ak Tn < alo < al2 < ... < al2[Tn/2) < ah < ... < al2[(Tn+l)/2)-1'
(2) [akrn' ak Tn+ 1] is km-clear,
(3) ak Tn+ 1 - ak Tn < (ak Tn - akTn_ 1)/3km.

To see that (1)-(3) can be satisfied inductively assume they hold up to m. By
(1) there is a c such that ai«; < c <" alo and [akrn ' c) is km-clear. By density
of {an} there exists km+1 > km such that ak rn+ 1 is in the left half of [akTn,c),
showing (2) for m + 1. Taking ak Tn+ 1 still closer to akTn also yields (3). To verify
(1) note that a < ... < akTn+ 1 < alo is already known. Next note (by induction)
that i; == km - Im-l + 2 ::; km + 1 ::; km+1 and hence -km < Im-l - k-, ::; 0,
so (2) implies that [alTn_1,alTn+ 1] == IlTn-l-kTn([akrn,akTn+l]) is a translate of
[akrn' akTn+ 1], which yields the remaining inequalities in (1).

To construct s let SI(X):== XO,k1(x) + X1,k1+l (x) == XO,k1(x) - XO,k1(I- 1 (x ))
and

Sm+l(X):==Sm(x) + Xkrn,krn+ 1(x) - Xlrn-1,lrn+l (x)

==sm(x) + X (x) - X (IkTn+l-lrn+l (x))i.;»;», «;»;«,
==sm(x) + gm+l(I-1(x)) - gm+l(X),

where gm+l(X) == E7~I-lTn-l Xk _. k _.(x). With (1) this yields
rn 1" Tn+l 1,

m m-l

sm(x) == L Xki_1,ki (x) + Xlo,h (x) - L Xli-1,li+l (x)
i=1 i=1

== XO,k Tn (x) + Xl2[Tn/2),l2[(rn+l)/2J-l (x) ---+ X[O,b) (x) + X[c,d) (x) ==: s(x)

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511809187.016
Downloaded from https://www.cambridge.org/core. Imperial College London Library, on 09 Apr 2019 at 19:42:18, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511809187.016
https://www.cambridge.org/core


478 14. Flows on surfaces and related dynamical systems

(note that we add mod 2), where b = limm~oo akTn, C = limm~oo a12Tn, d =
limm-+oo aI 2Tn+ I • Thus s has three points of discontinuity. Let us show that s is
a coboundary. First, cm(x) = hm(I-1(x)) - hm(x), where

m m k j - I-l j _ 2

hm(x) := Xo k (x) + "gi(X) = Xo k (x) +" " Xk . _0 k'_o(x).
, 1 L...J , 1 L...J L...J J-I I, J 1

i=2 j=2 i=2

Since .;\(g~~l({l})) ~ (km -lm-l)(akTn+1 -akTn) < (akTn -akTn_ I)/ 3 by (3), hm
converges in Ll to a function h whicli clearly satisfies (i').

Next we prove (ii). We call [akTn_1 +i, akTn+i) an interval of rank m if i E
{O, ... ,km- 1 - lm-2 - I}. Such intervals are either disjoint or there is an
inclusion: Suppose n ~ m, i E {O, ... , km- 1 - lm-2 - I}, j E {O, ... , kn - 1 ­

In-2 - I}, and akm_l+i ~ akn_l+j < akTn+i· Since kn- 1 + j < 2kn - 1 ~ 2km- 1 ,

applying I-(kn-1+j) gives akTn-l+(j-kn-1-j) ~ °< akTn+(j-kn_l-j), so we have
equality on the left and hence akTn_I+i = akn_1+j. In particular intervals of a
given rank are pairwise disjoint and hm is constant on every interval of rank m.

For any interval t1 C [0,1] there is an interval 6.' C t1 of rank m for some
m by density of {am}. hm is constant on 6,.' and for n > m (3) yields

n-m
.;\({x E 6.' I hn(x) = hm(x)}) 2: .;\(D,.') - L .;\(g;-Li({l}))

i=l

2:: A(~') (1 - ~ - ~ - .. ·- 3n~m) 2:: A(~')/3

and .x({x E 6.' I hex) = hm(x)}) 2: ,;\(6.')/3. On the other hand for the smallest
m' > m such that t::.' contains an interval t1" of rank m' the constant value of
hm , on D,." differs from that of b-« on t1' while the same argument as before
shows that .;\({x E 6,." I hex) = hm,(x)}) 2: .;\(t1")/3. 0

Exercises

14.5.1. Show that the set n/ defined in (14.5.1) is closed in nne
14.5.2. Show that if I has no saddle connections then the shift on n/ is mini­
mal.

14.5.3. Prove that every interval exchange has zero entropy with respect to
any invariant measure.

14.5.4. Consider the petmuteiiontt = (3,2,1). Show that the oriented interval
exchange transformation Iv , 7r for any vector v can be obtained by inducing a
circle rotation on an interval. Prove that in this case minimality implies unique
ergodicity and find a necessary and sufficient condition for minimality.

14.5.5. Consider an exchange of two arcs on the circle that changes orientation
on one arc. Prove that all orbits are periodic.
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14.6. Application to flows and billiards 479

14.5.6. Consider the map I x~, (X,j) t---+ (x+a,jX{3(x)), where X{3 is the
characteristic function of [0, ,8]. Show that there exist a, ,8 such that this map
has no saddle connection but is not uniquely ergodic.

6. Application to flows and billiards

a. Classification of orbits. Corollary 14.1.7 shows that interval exchange
transformations appear as (or, more precisely, are smoothly conjugate to)
Poincare maps induced by area-preserving flows on compact surfaces with fixed
points of the saddle type. There is also a more general case where the theory
of interval exchange transformations applies.

Let f: [0,1] -+ [0,1] be a piecewise-monotone map that is one-to-one and
continuous away from finitely many points. A convenient way to represent such
a transformation is as f == I 0 h, where h is a homeomorphism and I an interval
exchange transformation. Let J-l be a nonatomic f-invariant Borel probability
measure. Then the map g: [0,1] ---+ [0,1], g(x):==J-l([O, x]) is monotone and defines
a semiconjugacy between f and an interval exchange transformation, for the
factor map preserves Lebesgue measure and has only finitely many discontinuity
points. There is an obvious but important case where the semiconjugacy in fact
turns out to be a conjugacy.

Proposition 14.6.1. Any f == 10 h as above that preserves a measure positive
on open intervals is topologically conjugate to an interval exchange transforma­
tion.

Using Poincare maps for flows yields the following result.

Proposition 14.6.2. Let <p be a CO flow on a closed compact surface defined by
a uniquely integrable CO vector field X, and T a transversal to X. Suppose that
<p has a finite number of fixed points, which are orbit equivalent to (multiple)
saddles or centers. Furthermore suppose that <p preserves a Borel probability
measure that is positive on open sets. Then the first-return map induced on T

is topologically conjugate to an interval exchange transformation.

Proof. By the remark after Proposition 14.1.6 the return map is defined away
from finitely many points, which are the last points of intersection of the stable
separatrices of a saddle with T. Assume T does not pass through a center. The
return map preserves the measure v defined by v(A) :==J-l(U;=o <pt(A))jE for any
E > °that is smaller than the minimal return time for T. Since v(A) > 0 for
any open ACT, Proposition 14.6.1 applies. D
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480 14. Flows on surfaces and related dynamical systems

This result allows us to apply Theorem 14.5.13 to measure-preserving flows
on surfaces.

Theorem 14.6.3. Under the assumptions of Proposition 14.6.2 the surface M
splits in a <p-invariant way as M == U~=l Pi U U~=l Tj U C, where l is at most
equal to the genus of M, Pi are open sets consisting of periodic orbits, each Tj

is open, every semiorbit in Tj that is not an incoming separatrix of a fixed point
is dense in T j , and C is a finite union of fixed points and saddle connectione."

Corollary 14.6.4. If in addition ip has no saddle connections it is quasi­
minimal, that is, every semiorbit other than the fixed points and separatrices is
dense in M.

Remark. Similarly to the previous section we will call the Pi periodic compo­
nents and the Tj transitive components of the flow.

Proof. One can construct a finite family of closed transversals that intersects
every semiorbit of <p except for fixed points. Now apply Theorem 14.5.13 to
the return map on each transversal and take the images of each periodic and
transitive component under the flow. They produce the sets Pi and Tj . Any
orbit not included in these sets must be a saddle connection for the flow. It
remains to show that l ~ genus(M). First pick an orbit segment in each of
the T j that almost returns back and close it up to obtain a pretransversal '"Yj'
Preservation of measure implies that M <, '"Yj is connected. Since the '"Yj are

disjoint the same argument applies to M <, U~=l '"Yj, so I ~ genus(M) (see the
remarks after Theorem A.5.2). D

Remark. In the absence of centers one can give estimates on k-s-L. An easy one
involves counting the number of incoming separatrices using the Poincare-Hopf
Index Formula (Theorem 8.6.6); a more subtle argument gives k-s-l ~ genus(M).

b. Parallel flows and billiards in polygons. The case of best recurrence
properties appears when the decomposition of Theorem 14.6.3 contains a single
transitive component and no periodic component, that is, when M is a quasi­
minimal set for the flow as defined at the end of Section 14.4a. By Corollary
14.6.4 the absence of saddle connections is sufficient for quasi-minimality. In
the next section we will show how to parameterize the set of smooth orbit
equivalence classes of area-preserving flows in such a way that in the absence of
homologically trivial closed orbits most flows have no saddle connection. Right
now we will show that in natural one-parameter families of area-preserving
flows similar to linear flows on the octagon with slope as a parameter, all but
countably many flows have no saddle connection.

First, let us generalize the octagon construction from Section 14.4b. Let
P C }R2 be a polygon whose angles may be less than, equal to, or greater
than 1T. In other words, P is an ordinary (not necessarily convex) polygon and
some of its sides may be artificially subdivided into several pieces. Furthermore
assume that the sides of P are divided into pairs of parallel arcs of equal length.
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14.6. Application to flows and billiards 481

Denote the translations identifying the sides in each pair by TI±I, ... , T~I.
Any centrally symmetric polygon, convex or not, with pairs of opposite sides
identified is an example of such an arrangement. Another example is given
by the L-shaped polygon with two vertices added on the longer (outer) sides.
Identifying the pairs of sides by the translations makes P into a compact closed
surface P. As in Section 14.4b there is an obvious smooth structure at all points
except for those that come from vertices. At these points the smooth structure
can also be defined, but it is not essential for describing the orbit structure of the
parallel flow. For each value of the angle a E [0,271") one can define the parallel
flow on P as the motion with unit speed along the oriented lines that form an
angle a with the fixed direction (and taking into account the identification).
Such a flow is discontinuous; it is defined for all values of time only at points
whose orbits never hit a vertex. Since the set of such points has full Lebesgue
measure A it is defined as a measure-preserving flow for all values of time. In
order to make Theorem 14.6.3 applicable, multiply the vector field X a defining
the flow by a nonnegative function p vanishing precisely at the vertices and
such that p-I is Lebesgue integrable. The vector field pXi, is CO and integrates
uniquely to a CO flow preserving the measure p-I A which is positive on open
sets. The vertices are saddle-type fixed points and the first-return map on any
transversal coincides with that for the original discontinuous flow. Denote by
T the group of parallel translations generated by the translations T I , ... , Tm.­

Let PI, ... ,P2m be the vertices of P.

Proposition 14.6.5. If a parallel flow on P has a saddle connection then
its direction is parallel to a vector of the form g + Pj - Pi for some gET,
i, j == 1, ... ,2m.

Proof. Suppose there is a saddle connection, that is, an orbit that starts at
Pi and ends at Pi Consider the following process of "unfolding". Start at Pi
and each time the orbit reaches a side, instead of applying the appropriate
translation to the point, apply its inverse to the entire polygon. This way we
obtain a correspondence between the orbit and a segment of the straight line
beginning at Pi. Since there is a saddle connection, after finitely many crossings
the segment will reach a vertex of a shifted polygon T P. Obviously the shift
T is a linear combination of basic translations Tk , k == 1, ... , m, with integer
coefficients and the vertex is the translate of Pi: Thus the orbits are parallel to
T+Pj-Pi. 0

Corollary 14.6.6. For all but countably many values of a the linear flow on
P has no saddle connection and is hence quasi-minimal. The same applies to
the interval exchange transformation induced by the flow on any straight line
segment.

At the end of Section 14.4 we described a correspondence between the family
of parallel flows in the regular octagon and the billiard flow inside the right
triangle with an angle 1f /8. This construction allows a generalization which we
briefly sketch here.
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482 14. Flows on surfaces and related dynamical systems

Consider the billiard inside a polygon P whose angles are commensurable
with it . We will call such polygons rational. Let G be the group of plane motions
generated by the reflections in the sides of P. It has a finite-index normal
subgroup Go of parallel translations and the factor group GIGo is isomorphic
to a dihedral group Dr; it corresponds to the action of G on the set of directions.
In other words, the direction of any billiard orbit after reflection belongs to the
same orbit of GIGo. Now one can pick elements go, ... ,g2N-1 of G in each coset
of Go. They can be ordered in such a way that go == Id, gm+l == Rmgm, where
R m is one of the reflections in the sides of P generating G. Now we take the
2N copies P, RIP, R 2RIP, ... , R 2N-1 ... RIP of P and identify them using the
corresponding reflections. The resulting figure may have overlaps, unlike the
case of the 16 triangles in Figure 14.4.4. Nevertheless, for any "free" side of one
of the polygons there is a free side of another one which can be identified by a
translation from Go. Thus one can construct a closed surface S and for any orbit
of GIGo a flow on P lifts to a parallel flow on S which is defined unambiguously
despite the presence of several "sheets". Let us consider the billiard-ball map
on the set of unit tangent vectors with footpoint on ape A convenient way to
study it is to pick a side l and a direction a and consider the return map to
1 x (GIGo) {a }. The latter is a union of 2N intervals and after putting them
side by side and appropriately normalizing Lebesgue measure on each of them
we obtain a family 1(0:) of interval exchange transformations. Arguing exactly
as in the proof of Proposition 14.6.5 and passing to the section we obtain

Proposition 14.6.7. For any side 1 of a rational polygon the interval exchange
transformation 1(0:) has no saddle connection for all but countably many values
oi o ?

We have seen that Poincare maps on transversals to measure-preserving
flows are isomorphic to interval exchange transformations. There is, in fact,
a construction showing that at least in the oriented case any interval exchange
transformation appears in this way, that is, for any oriented interval exchange
transformation 1v , 1r (see Definition 14.5.1) there exists a compact orientable
surface M, a smooth area-preserving flow 'P with finitely many fixed points of
saddle type, and a transversal T such that the first-return map of 'P on T is
smoothly conjugate to 1v , 1r ' Thus in this sense these theories are equivalent.

Exercises

14.6.1. Construct an example ofan area-preserving flow whose fixed points are
simple saddles on the sphere with n handles that has n transitive components
and no periodic components.

14.6.2. Consider the parallel flow in the L-shaped polygon with identifications
as described near the beginning ofSubsection b. Show that the resulting surface
is homeomorphic to the sphere with 2 handles and after an appropriate time
change the flow has one topological double saddle.
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14.7. Generalizations of rotation number 483

14.6.3. Consider the parallel Bow in the L-shaped polygon with identifications
as described above. Reduce this to a parallel Bow in a polygon and calculate
the genus of the resulting surface.

7. Generalizations of rotation number

a. Rotation vectors for flows on the torus. In the discussion of circle dif­
feomorphisms in Chapter 12 we saw that the possibility of a smooth conjugacy
to a linear map is related to the arithmetic properties of the rotation number
of the circle diffeomorphism. As is to be expected, the situation is similar for
flows on the torus. This is one of many motivations for developing a notion
corresponding to rotation number. As in the definition of the rotation number
of circle diffeomorphisms we need to pass to the universal cover of the space.
However, there is an interesting distinction. For the circle the choice of genera­
tor in the first homology group is unique up to an orientation, but the lift of a
map to the universal cover is defined up to a deck transformation and the latter
factor is responsible for the rotation number being defined only modulo 1. For
a vector field on the torus (or any manifold) the lift to the universal cover is
unique, but the choice of generators in HI (1r2 ,Z) is not. Accordingly we will be
able to define a rotation vector for any given choice of basis in HI (1f2 ,Z) and
thus it is determined up to an action of 8L(2, Z).

Proposition 14.7.1. Let cpt be a fixed-po in t-free c: flow on 1r2 and denote the
lift of <pt to the universal cover}R2 by ~t. Then for every x E 1R2 the limit

(14.7.1)

exists and is independent of x. We will call it the rotation vector of cp.

Proof. First notice that existence and independence of x of p(<p) is an invariant
of flow conjugacy. Let h: 1f2 --+ 1f2 be a homeomorphism and H = L + G its
lift to the universal cover lR.2 , where L is a linear map and G is periodic. Let
x E R2 and y = H- l (x ). Then

!H(q>t(H-1 (x ))) = L(!q>t(y)) + !C(q>t(y)).
t t t

G(~t(y» is bounded, so limt-*oo H(iJlt(H- l(x»)/t = Llimt-*oo 4Jt(y)/t.
Using Proposition 14.2.1 we construct a closed transversal 7 to the flow cpt.

By Proposition 14.2.2 we obtain a c: diffeomorphism h: 1f2 --+ 1r2 which maps
7 into the standard "horizontal" circle 70 := 8 1 x {O} = {(s,O) I s E R/Z}
(we use additive notation). We will show existence of the limit (14.7.1) for
the flow h 0 cpt 0 h- l . Since every point returns to 70 and the return time to
70 is bounded it is sufficient to show existence of the limit for points on 70·

Furthermore by the same reason it is sufficient to consider only the sequence
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484 14. Flows on surfaces and related dynamical systems

of moments tn(s) of returns to TO. Denote the return map to TO by f and
its lift to lR x {o} by P. Notice that on the universal cover a return to TO
corresponds to a change of the second coordinate by 1 or -1; without loss of
generality we consider the first case. Then <I>tn(s)(s, 0) == (pn(s), n). Notice that
tn(s) == t(s) + t(f(s)) +...+ t(fn-I(s)), where t(s) is the return time to TO. We
use existence of the rotation number for s, that is, limn-too _pn(s)/n == T(f),
and unique ergodicity of P, which implies limn-too tn(s)/n == Jt(s) dJ-L ==: to,
where J-L is the unique invariant Borel probability measure for P. Then

. <I>tn(s)(s, O) . (n pn(s) n) (T(f) 1)
J~ tn(s) = nl~~ tn(s)' -n--' tn(s) == ~'to .

o
Now we can reformulate Corollary 14.2.7 without referring to a section.

Corollary 14.7.2. Let <pt be a CCX) flow preserving an area element. If the
coordinates of the rotation vector p( <p) are Diophantine numbers then <pt is Coo
conjugate to a linear flow.!

b. Asymptotic cycles.f Now consider a more general situation. Let M be a
compact differentiable manifold and <pt a C I flow generated by the vector field
X and preserving a measure J-L. Let w be a closed differential I-form. Then the
integral

! X-lwdJ-l

in fact depends only on the cohomology class of w, for if W2 - WI == d.F then
X-.J(W2 -WI) ==£xF and

due to the preservation of J-L. Thus the map w t---t JX -.JW dJ-L defines a linear
functional on the first de Rham cohomology group of M which by duality can
be identified with an element P/-t E HI(M,lR), which is called the asymptotic
cycle of the flow with respect to the measure J-L.

Suppose now that J-L is ergodic. In this case we can give a geometric inter­
pretation of the asymptotic cycle. By the Birkhoff Ergodic Theorem 4.1.2

lim.! t w(X(<pS(x)))ds = !X-.JwdJ-L
t-too t Jo

(14.7.2)

for J-L-a.e. x E M. Let 1't(x) be the oriented orbit segment from x to <pt(x). By

definition of integration of differential forms J; w(X(<ps (x))) ds == J~t(x) w. Now
we proceed similarly to the construction of homotopical entropy for a flow at
the end of Section 3.1. Namely, pick a family of arcs 1'x,y of bounded length
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14.7. Generalizations of rotation number 485

Replace ,t(x) by the closed loop i't(x) :==,t(x) ',y,x' From (14.7.2) and (14.7.3)
we obtain

lim ~ f W == !X...IWdj..L.
t-+oo t Jit(x)

Since any homology class in HI (M, JR) is uniquely determined by its values on
a basis of closed I-forms we can deduce that for j..L-a.e. x E M

1
PJ1- == lim - [i't(x)],

t-+oo t

where [.] denotes the homology class.
Note that for a uniquely ergodic flow all the above a.e. convergences are

uniform. It is not difficult to see (Exercise 14.7.1) that the rotation vector for
a fixed-point-free flow on the two-torus is simply a coordinate representation of
the asymptotic cycle with respect to the standard basis in the first cohomology
group.

In the two-dimensional orientable case which is currently our prime concern,
we can also interpret the asymptotic cycles as elements of the first cohomology
group. In general, for flows on n-dimensional oriented manifolds the correspond­
ing elements belong to the (n - l)st cohomology group. Namely, a vector field
X and an invariant measure j..L define a flux current, an object similar to closed
(n - I)-forms, which can be integrated over (n - 1)-submanifolds. If T is an
(n - 1)-dimensional oriented transversal to X and ACT a Borel subset then
the flux F(A) is defined as ±j..L(U;=o <pt(A))/E, where <pt is the flow generated
by X, E > 0 is any small number, and the sign is determined according to the
agreement of the orientation of M and the orientation obtained from the ori­
entation of X and that on T. To simplify the discussion we consider the special
case when the measure j..L is given by the volume n and that the vector field is
0 1 . Then the flux current is defined by integrating the (n -I)-form X...If! called
the flux form.

Lemma 14.7.3. The flux form is closed if and only if the vector field X pre­
serves f!.

Proof. By (A.3.3) and dO == 0 we have£xf! == d(X.JO). D

Any closed (n-l)-form w determines a linear functional j., in H 1(M, JR) (that
is, on H 1 (M , JR)) via lw(a) == fMw...IO:. Applying this to our case w == X...If! we
obtain

Next we will show how in the two-dimensional area-preserving case the asymp­
totic cycle can be extended to an invariant giving a complete local (in the space
of vector fields) classification up to smooth orbit equivalence.
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486 14. Flows on surfaces and related dynamical systems

c. Fundamental class and smooth classification of area-preserving
flows.i' We say that a zero P of an area-preserving vector field on a sur­
face is a generic saddle of index -n (or a generic n-fold saddle) if in local
coordinates near p the vector field is Hamiltonian with Hamiltonian function
H(x, y) == TI~~II(QiX - f3iY) + R(x, y), where all ratios f3i/ Qi are different and
R has zero (n + l j-jet at O. Thus any standard linear saddle is a generic I-fold
saddle and the saddle shown at the left of Figure 8.4.1 is a generic threefold
saddle.

Consider a closed compact orientable surface M of genus g, a smooth 2-form
n on M, PI,'" ,Pr E M, and nl,"" n.; E N such that L~=I ri; == 2g - 2.
Let X be the space of Coo vector fields on M preserving the form n such that
the point Pi is a generic saddle of index -ni for i E {I, ... , r} and there are
no other zeros. This description of critical points agrees with the Poincare­
HopfIndex Formula (Theorem 8.6.6). We call ~:== {PI, ... ,Pr} the critical set
and consider the space of I-cycles on M with real coefficients relative to ~.

Such a cycle can be represented as a linear combination of oriented arcs in M
whose boundaries belong to A. Relative boundaries are the same as ordinary
boundaries. Thus the space of relative cycles factored by relative boundaries
has dimension 2g + r - 1; one needs to add to 2g independent cycles a collection
of arcs connecting the points in ~ and forming a tree.

The restriction of the flux form for any vector field X E X to the space
of relative cycles is called the fundamental class of X and will be denoted
by FC(X). The first classification result for area-preserving vector fields on
orientable surfaces of genus g 2 2 can be summarized as follows.

Theorem 14.7.4. Suppose X, E X, 0 ::; t :S 1, is a smooth family such
that FC(Xt) == AtFC(Xo), where At is a positive scalar. Then there exists a
family lu: M ----+ M of Lipschitz homeomorphisms that are Coo diffeomorphisms
away from the critical set, and a positive function J-lt such that ht(Pi) == Pi for
i == 1, ... , rand (ht)*Xo == J-ltXt. In other words, h.; effects a Lipschitz orbit
equivalence between the flows generated by X o and X, that is Coo away from
the critical set.

Proof. Not surprisingly we will use a version of the "homotopy trick" that was
first used in the proof of the Moser Theorem 5.1.27 and then appeared several

more times. Consider the one-form Wt = xt...Jn and let at := d:t
. We will look

for the infinitesimal generator H t := dd
h t

of the family h t. Suppose we found h tt .
such that h;Wt == W00 Then if h;n == Atn we have
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14.7. Generalizations of rotation number 487

so we want to find a vector field H; for which the right-hand side of this identity
vanishes.

By assumption at is an exact form, that is, at == dPt , where the function Pt
is defined up to a constant. Furthermore, since at vanishes on relative cycles
Pt(Pi) == Pt(Pj) for i, j == 1, ... ,r, we can assume that Pt(Pi) == 0 for all i. Thus
it suffices to solve

(14.7.4)

It follows from the definition that ker Wt == Xt. The solution of (14.7.4) is defined
up to a term from ker Wt. Fixing a Riemannian metric we define the solution
uniquely by making it orthogonal to X; and such that (Xt , H t ) is a positively
oriented pair. Naturally Ht(Pi) == O. Thus H; is defined and continuous and
Coo away from the zeros of Xt. At the point Pi the form Wt has zeros of order
n; and the same is true for at since the Taylor coefficients are differentiable in
t. Hence Pt has zeros of order ri; + 1 and H; chosen along the gradient lines
of Pi decreases near Pi in proportion to the distance to Pi. Hence the H; are
Lipschitz vector fields and H; is uniquely integrable to a one-parameter family
of Lipschitz homeomorphisms that are smooth away from the critical set and
define orbit equivalences between X, and X o. 0

Remark. The source of nonsmoothness at the critical set is the presence of
local invariants of smooth orbit equivalence near multiple saddles. Namely, an
n-fold saddle has 2n + 2 separatrices and if two such saddles are smoothly orbit
equivalent then the tangent directions at the separatrices must be carried to
each other by the derivative of the conjugacy. Thus we have to consider the
action of G L(n, lR) on (n + 1)-tuples of lines. This action is transitive for n :S 2,
but there are invariants (cross-ratios) for n 2 3.

In fact, if all saddles are no more than double then in Theorem 14.7.4 smooth
orbit equivalence can be achieved. First notice that if the vector fields are
identical near the critical set then the resulting conjugacy will be the identity
nearby as well. Thus one can first find a local coordinate change near each
critical point that brings the saddle into a standard form. For the case of a
simple saddle this is a continuous-time counterpart of Exercises 6.6.4-6.6.5.
Making a time change and carefully applying the Moser Theorem 5.1.27 we
reduce to the situation of flows that are identical near the critical set.

Proposition 14.7.5. Consider an area-preserving vector field on a surface
with finitely many fixed points of the saddle type. Then invariant measures
supported on transitive components are determined uniquely by their asymptotic
cycles.

Remark. This is an analog of Theorem 14.5.14 for flows.

Proof. By Theorem 14.6.3 it suffices to show that the flux through a small
transversal inside a transitive component is determined by the asymptotic cycle
of the measure, that is, by the fluxes through closed curves. To that end we
take, using Theorem 14.6.3, an orbit segment starting very close to one end of
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488 14. Flows on surfaces and related dynamical systems

the transversal and ending very close to the other end, and close it using the
piece of transversal. The fluxes through these closed curves coincide with those
through their transverse portion and on the other hand each of them and hence
their limit, which is also the flux through the transversal, is indeed determined
by the asymptotic cycle. D

Theorem 14.7.6. There are at most genus(M) nontrivial ergodic invariant
measures for any area-preserving vector field on a surface M. 4

Proof. We begin by showing that the asymptotic intersection number (see the
remarks after Theorem A.5.2) of any two dense orbits for such a vector field is
zero. To that end take a transversal and for any two orbits consider segments
beginning and ending on the transversal, and intersecting the transversal n
times. We refer to the construction of the asymptotic cycle by closing orbits
by transverse pieces and close these two orbit segments by the pieces of the
transversal connecting their ends. The lengths of the resulting curves then
are of order n each. They can intersect each other no more than 2n times,
namely, on the transversal, so their intersection number is of order 2n/n2 after
normalizing by length, whence the limit is indeed zero. Thus all dense orbits lie
in a g-dimensional Lagrangian subspace for the (symplectic) intersection form
(see the remarks after Theorem A.5.2).

Now nontrivial flow-invariant measures are determined by their asymptotic
cycle, that is, we have an injective map from ergodic measures to asymptotic
cycles. It is affine and hence mutually singular measures correspond to linearly
independent points as in the proof of Theorem 14.7.6; hence the image lies in
this g-dimensional subspace, so there are at most 9 distinct ergodic measures.

D

Exercises

14.7.1. Show that the rotation vector for a fixed-point-free flow on the two­
torus is the coordinate representation of the asymptotic cycle with respect to
the standard basis in the first cohomology group.

14.7.2*. Consider the double torus and pick a standard basis (1'1,1'2,1'3,1'4) in
the first homology group that consists of generators of the homology of one of
the joined tori. Pick two points p, q and join them by a short curve 1'5. Show
that for any (Xl, X2, X3, X4) with positive coordinates there exists an E > 0 such
that for IX51 < E 'there exists a Coo area-preserving flow on the double torus
with simple saddles at p and q, and the flux through 1'i is Xi.

14.7.3. Under the assumptions of the previous exercise show that if(x1, ... , X5)
are rationally independent then the resulting Bow is quasi-minimal.

14.7.4*. Show that among the flows constructed in the previous exercises there
are quasi-minimal nonergodic ones.
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